2. Looking at XXX table in XXXX XXXX we XXXXX XXX a XXXXXXXXXX XX.56%, XXXX corresponds 1.X x 8.1= XX.XX XXX XXXXX XXX mean XX.X XXXXX XX XX.45 for XXX upper XXXXX. XXX XXXXX XXXXX XXXXX XX XX.3 - 12.15 = XX.XX. XX XXX range of times XXX the 55.XX % XXXXXX XXXXX XX (XX.15, XX.XX)
3. XXX minimum XXXXXXXXXX of XXXXXXXXX XXX commute XXX times XXXXXXX 3 and XX.6 minutes is XXXXXXXXX on XXX z score. (X - 27.X)/ X.1 XX -3 XXXXXXXX deviations XXXXX XXX mean. XX.X is (XX.X - XX.3) / 8.X XXXXX will XXXX us 3 XXXXXXXX deviations XXXXX. So once XXXXX XXXXXXX XX the table we get 88.89% of XXXXXX XXX in XXXX range XX XXXXXXX XXXXX.
Chebyshev’s InequalityXXXXXXXXX XX the X.S. XXXXXX Bureau, the XXXX of XXX XXXXXXX time to XXXX XXX a resident XX XXXXXX, XXXXXXXXXXXXX, is 27.X minutes. XXXXXX that XXX standard deviation XX XXX commute XXXX is 8.X minutes to XXXXXX the following:
What minimum XXXXXXXXXX of commuters in XXXXXX XXX a commute XXXX within 2 standard XXXXXXXXXX XX XXX mean?
What minimum percentage XX commuters in Boston has a XXXXXXX time XXXXXX X.5 standard deviations XX the XXXX? XXXX are XXX commute times within 1.5 standard XXXXXXXXXX of XXX mean?
XXXX XX XXX minimum percentage of commuters XXX have XXXXXXX times XXXXXXX 3 minutes and 51.X minutes?