Consider an ordinary differential equation of the form : dy/dt =2t+3 ,
Now we take the formula for dy/dt and cross XXXXXXXX so that XXX XXX t's XXX on one XXXX XXX all y's XX other.
So XXXX XX have,
dy= (2t +3) dt
XXX XX XXXX to XXXXXXXXX both sides.
XXXXX integration we XXX the XXXXXXXX as,
y=t^2 + 3t + C , where C is the constant XX integration.
XXXXXX XXX is XXXXXXXXXXX factor Method:
XXXX we XXXX to first write the XXXXXXXXXXXX XXXXXXXX in XXX form: dy/dt+p(t)y=X(t)
XXXXXXXX an XXXXXXX,
dy/dt+2y=X
XXXX p(t)=2 and q(t) =X
Now XX XXXX to find an integrating XXXXXX i.e. u(t)=e^(Integral XX p(t) dt)
i.e. e^{Integral 2dt}= e^(2t)
Now XX XXXX XX XXXXXXXX XXX whole XXXXXXXXXXXX XXXXXXXX XXXX XXX XXXXXXXXXXX XXXXXX. i.e.
e^(2t) dy/dt+2e^(2t) y=3e^(XX) -----&XX; (1)
Now XXX left hand side can XX written as a XXXXX XXXXXXXXXX i.e.
e^(XX)dy/dt+XX^(XX)y=(e^(XX)y)'
Substituting XXXX in (1) we get,
(e^(2t)y)'=XX^(2t)
Now integrating XXXX XXXXX XX XXX,
e^(2t)y=e^(XX)+C
i.e.
y=1+XX^(-2t) XX XXX XXXXXXXX XXXX constant X.