Consider an ordinary differential equation of the form : dy/dt =2t+3 ,
Now we take the formula for dy/dt and cross multiply so XXXX XXX the t's XXX XX XXX XXXX XXX XXX y's on other.
XX here XX XXXX,
dy= (XX +X) dt
XXX XX XXXX to integrate both sides.
After integration we get the solution as,
y=t^2 + XX + X , XXXXX X XX XXX constant of integration.
XXXXXX XXX is XXXXXXXXXXX XXXXXX XXXXXX:
XXXX XX XXXX to XXXXX write XXX differential XXXXXXXX in the form: dy/dt+p(t)y=q(t)
Consider an XXXXXXX,
dy/dt+XX=X
Here p(t)=X XXX X(t) =X
XXX XX have XX find an integrating XXXXXX i.e. u(t)=e^(Integral of p(t) dt)
i.e. e^{Integral 2dt}= e^(XX)
XXX XX have to XXXXXXXX XXX XXXXX XXXXXXXXXXXX XXXXXXXX with XXX XXXXXXXXXXX factor. i.e.
e^(XX) dy/dt+XX^(XX) y=XX^(XX) -----> (X)
XXX the left XXXX XXXX XXX XX XXXXXXX XX a total XXXXXXXXXX i.e.
e^(XX)dy/dt+XX^(2t)y=(e^(XX)y)'
XXXXXXXXXXXX XXXX in (1) we get,
(e^(XX)y)'=2e^(XX)
Now integrating XXXX sides XX XXX,
e^(2t)y=e^(2t)+C
i.e.
y=X+Ce^(-2t) XX the solution with XXXXXXXX X.