Consider an ordinary differential equation of the form : dy/dt =2t+3 ,
Now we take the formula for dy/dt and crXXX XXXXXXXX so that all the t's XXX on one side XXX all y's on other.
XX XXXX we XXXX,
dy= (2t +X) dt
Now XX XXXX to integrate XXXX sides.
After XXXXXXXXXXX XX XXX the solution XX,
y=t^2 + 3t + C , XXXXX C XX XXX XXXXXXXX XX integration.
Second XXX XX XXXXXXXXXXX factor Method:
XXXX we have XX first write the XXXXXXXXXXXX XXXXXXXX in the XXXX: dy/dt+p(t)y=q(t)
Consider an example,
dy/dt+XX=3
XXXX p(t)=X XXX q(t) =X
Now XX XXXX XX find an XXXXXXXXXXX factor i.e. u(t)=e^(XXXXXXXX of p(t) dt)
i.e. e^{Integral XXX}= e^(2t)
XXX we XXXX to multiply XXX XXXXX differential XXXXXXXX XXXX the XXXXXXXXXXX factor. i.e.
e^(XX) dy/dt+XX^(XX) y=XX^(XX) -----> (1)
Now XXX XXXX hand side can XX written XX a total XXXXXXXXXX i.e.
e^(2t)dy/dt+2e^(XX)y=(e^(XX)y)'
XXXXXXXXXXXX XXXX in (X) we get,
(e^(XX)y)'=2e^(XX)
XXX XXXXXXXXXXX both sides XX get,
e^(XX)y=e^(XX)+X
i.e.
y=X+Ce^(-XX) is XXX solution XXXX constant C.