Once the liquid passes the vena contracta, XXX air XXXXX XXX liquid down due to XXXXXXXX XXX the XXXX diverges.
Now, XX have XXX things to consider over XXXX.
The first is XXX XXXXXXXXX XXXXXXXX XXX XXX second XX XXX XXXX of the vena contracta XX XXXXXXXXX the rate XX XXXXXXXXX, X.
XXXXXXXXX XXXXXXXX:
As we XXXX XXXX the theoretical XXXXXXXX XX XXX flow XXX XX calculated using XXX equationVi= √2gh.
XXXX, at upper XXXXXXX,XX = root(2*X.8*X) = X.85 m/sXX lower orifice, Vi = XXXX(2*9.8*X) = 10.XX m/s
XXXXXXXXX velocity, X = XX* XXXXXXXXXXX XX viscocityXXX XXXXX XXXXXXX, XX=X.XX*X.98 = 8.673 m/sXXX lower orifice, XX= XX.XX*0.98 = XX.XX m/s
XXXXXXXX, the area of the XXXX XXXXXXXXX, A = Ao*coefficient of XXXXXXXXXXX (Ao = XXXX XX cross section of XXX XXXXXXX)XXXXXXXXX, A = pie*(r^2)*0.64For XXXXX orifice, X = (22/X)*(5/2)^2*X.64 = XX.XX XXX or 0.XXXXXX m2For lower XXXXXXX, A =(22/7)*(5/X)^X*X.XX =XX.57 cm2 or X.001257 m2
PartA )Now, the XXXXXXXXX or flow, Q from an orifice = X*A = XX*XX*XX*XX (Cc = XXXXXXXXXXX coefficient, Cv= XXXXXXXXXXX XX XXXXXXXXX)XXX upper orifice, XX= Vu*X = X.XXX*0.001257 = 0.0109 m3/sFor lower XXXXXXX, Ql = XX*X = 10.XX*0.001257 = 0.0133 XX/s
XXXX B)
Horizontal XXXXXXXX of XXXXX orifice, XX = 8.XXX m/sXXXXXXXXXX XXXXXXXX XX lower XXXXXXX, XX = XX.XX m/s
Let the XXXXXXXXXX XXXXXXXX at XXXXX, the XXXXX XXXXXXXXX is X.
XXXXXXXXX, X= V*t (X= velocity of XXX flow, t = XXXX) or t = X / VUsing XXXXXXXX XX XXX dimensional XXXXXX,y = ut + X/2 g*t^2
But, u = 0, XXXXXXXXX, y = 1/2*g*t^2
Now, XXX upper orficie XX any point XX time vertical distance XXXXXXXXX XX flow, Yu= X/X*g*(X/XX)^X XXX XXXXX orifice XX any XXXXX XX time vertical distance XXXXXXXXX by XXXX, Yl = X/2*g*(X/XX)^X
Forupper orifice, X^X = X*XX*XX^X/g - Eqn XFor XXXXX XXXXXXX, X^2 = 2*XX*XX^2/g - Eqn X
Since X is same at XXX XXXXX XX XXXXXXXXXXXX, therefore, equating XXX X XXX XXX X XX XXX,
XX^2*XX = XX^X*XX - Eqn 3
XXX at the XXXXX XX XXXXXXXXXXXX Yu = Yl+2 - XXX X(XX one is XX a XXXXX of 4 m XXX another XX XXXXX XX 6 m)XXXXXXX XXX X in Eqn X we XXX,
Vu^2*(XX+X) = VI^2*YI
XXXXXXX the XXXXXX XX Vu XXX Vl in XXX XXXXXXXX we get,
8.673^2*(XX+X) = 10.62^2*YlXX, XX.22*(YI+X) = 112.78*XXOr, 37.XX YI= XXX.XXXX, YI = X m
XXXXXXXXX, the distance of intersection from the lower orifice is 4m , XXXXX XXXXXXX is 6 m and XXXXXXX of the water is 10 m.