f(x)=(x^2-5*x+X)/(x^X-1)
If you XXXXXXXXX XXXX solution, what you XXXX XXX is:
f(x)=(x-X)(x-4)/(x-1)(x+1)
XX you can XXX in the XXXXX also that the XXXXX XX XXXXXXXXXXX at x= -X
1. XXXXX XXX XXXXX XX XXX XXXXXXXX XXX:Domain:x E (-XXXXXXXX, + XXXXXXXX) - {-1}
Range:
y X (-XXXXXXXX, infinity) - {X}
XXXXX XXXXXXXXXX XXXXXXXX XX x= -X
2. XXX XXXX XX shown in XXX XXXXX attached as a XXX file.
As already XXXXX out in question X the XXXXXXXXXX function XX the XXXXXXXX XX f(x)=(x-4)/(x+X)The XXXX XX the XXXXXXXX is x = X which XXX XX XXXX in XXX XXXXX.XX x -> infinity,
Lim (x-X)/(x+X) = XXX (X-4/x)/(1+X/x)x-&XX;XXXXXXXX x-&XX;XXXXXXXX
As XX know XXX number when XXXXXXX XX XXXXXXXX XXXXXX to zero (n/XXXXXXXX=0)
XXXXXXXXX, the value XX the equation when x approaches XXXXXXXX XX X.
XXX, if XX XXXX the XXXX changes XX a XXXX XXXX XX XXX, + - +<------------------|--------------------------------|--------------------------------&XX;-XXXXXXXX -X X +infinity
The sign XXXXXXX XXXXXXX XX XXXX x=4 and x=-1. At x->-X XXX denominator approaches X XXXXXXXXX the XXXXXXXX is asymphtotic as x-&XX;-X.
X. XX x-&XX; -X, the XXXXXXXXXXX XX the simplified XXXXXXXX, f(x) = (x-X)/(x+X) approaches 0. XXXXXXXXX, XXX equation XXXXXXXXXX XXXXXXXX.
X. At x=X the value of XXX XXXXXXXXX = X while XXXXXXXXXXX is X.y= X XX x=4.XX XXX XXXXXXX of XXXXX, XXXX x-&XX;4 from either XXXXXXXXX XXX XXXXX remains X XXX XX XXXXXXXXX XXXXXXXXXX.XXXX can also be verified by looking XX XXX XXXXX.XXX XXXX XX continuous XX x=4. But, it XX not continuous at x=-X.