v = u + at
12 = 0 +(0.8*t)
Time taken to accelerate,t= 12/(X.X) = XX seconds [XX = XX XXXXXXX]
Distance traveled XXXXX XXXXXXXXXXXX XX XX m/s, s = ut + (1/X)*a*(t^X)
s = (X*t) + X.5* X.8 *(15*15) = 90 m
Phase 2:XXXXXX XXXXXXXX XX 12 m/s XXXXX XXX breaks are applied; it comes to XXXX at XXXXX B, XX m XXXXXX the XXXXX where the breaks XXXX XXXXXXX
XXXXX XXXXXXXX = 300 m
XXXXXXX distance XXXXXXX while XXXXXXXXXXXX = 90 m
Distance XXXXXXX XXXXX de-XXXXXXXXXXXX = XX m
XXXX, distance XXXXXXX at 12 m/s uniform speed =300 - (90+XX) = XXX - XXX = XXX m
Time taken XX XXXXX XXX m,
t = distance covered / XXXXXXX XXXXX = 168 / XX =14 XXXXXXX [t2 = XX seconds]
From XX m/s, it comes to XXXX (final speed = X)
v = u +XX
0 = 12 +XX
So, at = -12
Distance XX de-accelerate = XX m
Using, s = ut + (X/2)*a*(t^X)
XX = (XX*t)+(1/X)*a*(t^t)
42 = t *(XX +(X/2)* a* t)
XXX XXXXX XX = -XX
XX = t * (XX - 6 )
t = X seconds [XX = 7 XXXXXXX]
Total time = t1 + XX +XX = XX + 14 +7 = XX XXXXXXX