m=2
XXXXXXXX in XXXXXXX XX y=XX+b where b XX XXXXXXXXX
XXX XXXXXXXXXXX it let we XXX point B(6,XX)
So XX XXXX XXXX y=11 XXX x=X XXXX put in the equation
Y=XX+b
11=2×6+b
b=-1
so XXXXXXXX is = X − X
XXX XXXXX so first XXXXXXXXX XXXXX of XXX XXXXXXXXXXXXX XXXXXXXX
Midpoint of AB XXX (
,
)=(5,9)
Slope of XXX XX can calculate from above XXXXXX as
= = X
XXX XXXX XX the Perpendicular XXXXXXXX is− XX AB so XXXX XX -
XXX XX XXX calculate the XXXXXXXXX using (X, 9) XXX m as -X/X
XX XXX
9=− ×5+b
XXX y =-12hence XXXXX XXX the XXXXXXXXXX of XXXXX C
b=11.5
now equation XX
Y= − + XX.5 XX
(XXX)
XXX’s XXXX the XXXXXXXX XX line XX which is perpendicular XX XXXX XX XXXXXX equation which XX y=2x-X perpendicular line XX XXX that has a XXXXXXXX, reciprocal slope XX another.
XX XX XXXX have equation y=-X/XX-1
As y will be XXXX XXX XXX XXXXX c XXXXXX XX use equation of XX or XXXXXXXX XX so we XXX put them XXXXX
-X/XX-X=-3x+45
X.XX=46
X=XX/X