is:
Total Output / Total Productive Hours
Depending on the desired result, variables can be XXXXXXXXX in monetary XXXXX or XXXXXXXX.
For XXXXXXX, you XXXX a bakery. XXX sell XXXXX bread with X,25 dollars. XXX XXXX X XXXXX XXX XX XXXXXX 100 XXXXXX of bread XXX working shift.
Labour productivity:
100 XXXXXX/8hours =12.X XXXXXXX/h
100 XXXXXX of XXXXX *X,XX/XXXXXX =XX.625$/h
The above variables can XX improved XX the baker XXX XXXXXX to more XXXXXXXXXX or gains new XXXXXX XXX XXXXXXXXXX XXXXX-XXXX. XXXXXX, XXXXXXXXXX and experience can XXXX the XXXXXXXXXXXX.
2. Changes in XXXXXXXXXXXX XXX XXXXXXXXX XXX XXXXXXXX XX XXXXXX XX XXXXXXXXXX or XXXXXX GDP XXX welfare.
XX the productivity XXXXX then XXXX XXXXX can XX XXXXXXXX XXXX XXX XXXX XXXXXX or work-XXXXXX. XXXX brings larger profits or the possibilityto reduce prices, making XXX XXXXXXXX more-XXXXXXXXXXX on XXXXXX.
XXX XXXXXXX the XXXX XXXXXX:
XX we send our baker XX a XXXXXX XXXXXX XXX he gains XX% more productivity XXXX XX XXXX:
XXX+XX% breads/XXXXXX =13.75 breads/h
XXX pieces XX XXXXX*X,XX/8hours =XX.18$/h
XX XXXXXX 1.55$/h in productivity. With this XXXXX XXXXX, we XXXXX rise XXX XXXX to XXX XXXXX. If he XXX a greater XXXX he XXX XXXXX more on XXXXXXXX. More shopping means a XXXXXX life XXXXXXXX.
">