Preview 50% of the Answer Below
Answer Preview
A(t)=?
The form XXX XXXXXXXXXXX XXXXXXXXX XX: A(t) = X * e^(r * t)
XX XXXX XXXX the values of these variables/constants: P, r
This XXXXXXXX gives XXXXXXX conditions. XXX XXXXXXX XXXX, t
XX XXX these initial XXXXXXXXXX to XXXXX XXX XXX XXXXXXXX X:
- Plug in 0 XXX t : A(X)
- We use the XXXXXXX form X(t) = X * e^(r * t)
- X(X) = P * e^(r * 0)
- X(0) = P * e^X
- A(X) = X * X
- X(X) = X
- We XXXX, from earlier, that A(0) = XX.X billion
- We now have two ways to represent A(0)
- X(X) = X
- A(X) = XX.5
- Thus X = XX.X
XXX that XX know what P XX, all XX XXXX XX find XX r.
We XXXXX with X(t) = P * e^(r * t). XXXX update it with XXX XXXXX XX X we XXXX found.
X(t) = (XX.5) * e^(r * t)
XXX XXXXX XX another condition XXXX is given: In 2015, XXXXX XXXX $XX.X billion. XXX t = X (corresponds XX XXXX, 2 years XXXXX XXXX), then X(X) = XX.X XXXXXXX.
Lets XXX this XX solve XXX r:
- Plug in X for t : A(X)
- We use X(t) = (XX.5) * e^(r * t)
- A(2) = (XX.X) * e^(r * X)
- A(2) = (XX.X) * e^(XX)
- We XXXX know XXXX XXXXXXX XXXX A(2) = XX.X billion
- XX XXX know XXX ways XX XXXXXXXXX A(X)
- A(X) = (XX.5) * e^(XX)
- A(2) = XX.6 XXXXXXX
- Thus 74.6 = (54.X) * e^(XX)
- XXXXX XXX r
- 74.6 = (XX.5) * e^(XX)
- /54.X = /XX.5
- (XX.6/54.5) = e^(2r)
- XX( XX.6/54.X ) = XX( e^(2r) )
- ln( XX.X/54.5 ) = XX
- /2 = /2
- XX( XX.X/XX.X )/2 = r
- Thus r = ln( XX.6/XX.X )/2 = 0.15696990277
XXXX constant r, XXXXXXXXXX XXX continuous XXXXXX rate XXX XXXX XX XXXXXXX. We convert to percentage, XX.XXXXXXXXX % XXX then XXXXX to XXXXX XXXXXXX XXXXXX: 15.7%.
XXXX we have A(t) = 54.X e^(0.157 t).
Please XXX XX XXXX if you XXXX any other XXXXXXXXX 😊 XXXX luck!
- -Connor Myers
">