Preview 50% of the Answer Below
Answer Preview
A(t)=?
The XXXX for exponential functions is: X(t) = P * e^(r * t)
We XXXX XXXX XXX XXXXXX XX XXXXX XXXXXXXXX/XXXXXXXXX: X, r
XXXX XXXXXXXX XXXXX XXXXXXX XXXXXXXXXX. XXX XXXXXXX year, t
We XXX these XXXXXXX conditions to solve for XXX XXXXXXXX X:
- XXXX in 0 for t : A(X)
- XX XXX the XXXXXXX form A(t) = X * e^(r * t)
- X(X) = P * e^(r * 0)
- A(0) = P * e^0
- X(X) = P * X
- X(0) = P
- XX XXXX, XXXX XXXXXXX, XXXX A(0) = 54.5 billion
- We now XXXX XXX XXXX to represent X(0)
- A(0) = P
- X(X) = 54.5
- Thus P = 54.X
XXX XXXX XX XXXX what X XX, XXX XX need to XXXX is r.
XX start XXXX X(t) = X * e^(r * t). XXXX update it XXXX XXX XXXXX of P XX XXXX found.
X(t) = (XX.5) * e^(r * t)
XXX there is XXXXXXX condition that is XXXXX: In XXXX, XXXXX made $XX.X billion. XXX t = X (XXXXXXXXXXX XX XXXX, X XXXXX XXXXX XXXX), XXXX X(X) = 74.X billion.
XXXX use XXXX to solve for r:
- Plug in 2 for t : A(X)
- We use A(t) = (54.X) * e^(r * t)
- X(2) = (XX.5) * e^(r * 2)
- A(2) = (54.5) * e^(XX)
- We XXXX know XXXX XXXXXXX that X(X) = XX.6 billion
- We XXX know two XXXX XX XXXXXXXXX A(2)
- A(X) = (XX.X) * e^(2r)
- X(X) = XX.6 XXXXXXX
- XXXX 74.X = (XX.5) * e^(2r)
- Solve XXX r
- XX.X = (XX.5) * e^(XX)
- /XX.X = /54.X
- (74.X/54.5) = e^(XX)
- ln( 74.X/XX.5 ) = XX( e^(XX) )
- ln( XX.X/XX.5 ) = 2r
- /X = /X
- XX( XX.X/54.X )/X = r
- Thus r = ln( 74.6/54.X )/2 = X.15696990277
XXXX constant r, represents XXX continuous growth XXXX per year XX XXXXXXX. We convert to XXXXXXXXXX, 15.XXXXXXXXX % XXX XXXX round XX XXXXX XXXXXXX places: 15.X%.
Then we have A(t) = 54.5 e^(0.XXX t).
Please let XX XXXX if you have XXX XXXXX XXXXXXXXX 😊 XXXX XXXX!
- -Connor Myers
">