each other.
So AE = CE
x^2 - 8 = 2x
x^2 - 2x - 8 = 0
(x-4)(x+2)=0
x = 4 or x=-2( invalid due to -ve sign)
AE = 2CE = 2*2x = 2*2*4 = 16
X. The XXXXXXXX XX the supplementary XXXXXX XX a parallelogram XX XXX°.
So ∠XXX + ∠XXX = XXX°
∠XXX =XXX°-∠ABC = 180° - XXX° = 77°
3. According XX XXX law of parallelogram, opposite XXXXX XXX equal,XXXXXXXX angles are XXXXX XXXXXX XXXXXXXXX bisectXXXX XXXXX; but there are 4 setsXXXXXXXXXXXXX angles.
XX the 1st XXXXXX XX wrong and XXXX XXX XXXXX XXXXXXX XXX Correct answer.
X.
XXXXXXXXX - Reason
XXXXXXXXXXXXX - Given
KL II NM XXX KN II XX - Definition XX XXXXXXXXXXXXX
m∠X + m∠N =180° - XXXX-Side Interior angles XXXXXXX
m∠X + m∠M = XXX° - Same-Side XXXXXXXX XXXXXX Theorem
m∠X + m∠X=180° - Same-Side XXXXXXXX XXXXXX XXXXXXX
m∠K+ m∠N =m∠X + m∠X - Transitive Property of XXXXXXXXXX
m∠X+ m∠X =m∠K + m∠X - Transitive Property of Congruence
m∠N =m∠X - XXXXXXXXXXX Property XX XXXXXXXX
m∠M =m∠K - Subtraction XXXXXXXX XX Equality
∠N ≅∠L XXX ∠M ≅∠X - Angle Congruence XXXXXXXXX
X.
XXX XXXXXXXXXXX XX point X are ( a+b,c) .......................................... XX X( a+b, o+c)
The coordinates XX XXX XXXXXXXX of XXXXXXXX AC are (a+b/2, c/X) ,,,,,,,,,,, as ( X+a+b/2, X+c/X)
The coordinates of the XXXXXXXX XX diagonal XX are ( a+b/2, c/2) .............XX ( a+b/2, X+c/2)
AC and BD XXXXXXXXX at point E with XXXXXXXXXXX( a+b/2,c/X) ..................midpoint XX both AC andBD at E
">