each other.
So AE = CE
x^2 - 8 = 2x
x^2 - 2x - 8 = 0
(x-4)(x+2)=0
x = 4 or x=-2( invalid due to -ve sign)
AE = 2CE = 2*2x = 2*2*4 = 16
X. The addition XX the XXXXXXXXXXXXX angles XX a parallelogram XX 180°.
So ∠BCD + ∠ABC = XXX°
∠BCD =XXX°-∠XXX = XXX° - 103° = XX°
3. According to the law XX parallelogram, XXXXXXXX sides XXX equal,opposite angles XXX equal XXXXXX diagonals bisectXXXX other; but XXXXX XXX 4 XXXXsupplementary angles.
XX the 1st option is wrong XXX rest XXX three XXXXXXX are XXXXXXX answer.
X.
XXXXXXXXX - Reason
XXXXXXXXXXXXX - XXXXX
XX II XX XXX XX XX XX - Definition of XXXXXXXXXXXXX
m∠K + m∠N =180° - XXXX-XXXX XXXXXXXX angles XXXXXXX
m∠X + m∠X = 180° - Same-XXXX Interior angles XXXXXXX
m∠K + m∠L=180° - XXXX-Side XXXXXXXX angles Theorem
m∠X+ m∠N =m∠X + m∠L - XXXXXXXXXX Property XX XXXXXXXXXX
m∠X+ m∠X =m∠K + m∠L - Transitive XXXXXXXX XX Congruence
m∠N =m∠L - Subtraction Property of Equality
m∠X =m∠X - Subtraction XXXXXXXX XX Equality
∠N ≅∠X and ∠M ≅∠K - XXXXX XXXXXXXXXX Postulate
5.
XXX XXXXXXXXXXX of XXXXX C XXX ( a+b,c) .......................................... as X( a+b, o+c)
XXX coordinates XX XXX midpoint XX diagonal AC XXX (a+b/2, c/X) ,,,,,,,,,,, XX ( 0+a+b/X, 0+c/X)
The coordinates XX XXX XXXXXXXX XX diagonal XX XXX ( a+b/X, c/X) .............as ( a+b/2, 0+c/X)
AC XXX BD intersect at point E XXXX XXXXXXXXXXX( a+b/X,c/2) ..................midpoint XX both XX andBD at X
">