each other.
So AE = CE
x^2 - 8 = 2x
x^2 - 2x - 8 = 0
(x-4)(x+2)=0
x = 4 or x=-2( invalid due to -ve sign)
AE = 2CE = 2*2x = 2*2*4 = 16
2. XXX XXXXXXXX of XXX XXXXXXXXXXXXX angles XX a XXXXXXXXXXXXX is XXX°.
So ∠XXX + ∠XXX = XXX°
∠BCD =180°-∠ABC = 180° - XXX° = 77°
3. XXXXXXXXX to XXX XXX XX XXXXXXXXXXXXX, opposite XXXXX are equal,opposite angles XXX equal XXXXXX diagonals XXXXXXeach XXXXX; but there are X XXXXsupplementary XXXXXX.
XX XXX 1st XXXXXX XX XXXXX and rest all XXXXX XXXXXXX XXX XXXXXXX answer.
4.
Statement - XXXXXX
XXXXXXXXXXXXX - XXXXX
KL XX XX and KN II XX - Definition of XXXXXXXXXXXXX
m∠K + m∠N =180° - Same-XXXX XXXXXXXX angles XXXXXXX
m∠X + m∠M = XXX° - XXXX-Side XXXXXXXX angles XXXXXXX
m∠X + m∠X=XXX° - Same-Side Interior angles XXXXXXX
m∠K+ m∠N =m∠X + m∠X - Transitive Property XX Congruence
m∠X+ m∠M =m∠K + m∠L - Transitive XXXXXXXX of Congruence
m∠N =m∠L - Subtraction XXXXXXXX XX Equality
m∠X =m∠X - XXXXXXXXXXX XXXXXXXX XX Equality
∠N ≅∠X XXX ∠M ≅∠X - Angle XXXXXXXXXX Postulate
X.
The XXXXXXXXXXX XX XXXXX C are ( a+b,c) .......................................... as X( a+b, o+c)
The XXXXXXXXXXX of XXX XXXXXXXX of XXXXXXXX AC XXX (a+b/X, c/2) ,,,,,,,,,,, as ( X+a+b/X, X+c/2)
XXX coordinates of the XXXXXXXX of diagonal BD are ( a+b/X, c/2) .............XX ( a+b/X, 0+c/X)
AC and XX intersect XX XXXXX X XXXX coordinates( a+b/2,c/X) ..................XXXXXXXX XX both AC andBD XX E
">