The correlation between XXXXXX XXX Calories XX X.86 (X.XXXXXXX).
XXX XXXXXXX plot shows that the XXX XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX XXXXXX. XXXXXXXXX, with 1 XXXX increase in Calories, the amount XX XXXXXX will increase X.212 mg. XXXXX seems XX be XXX outlier (107, 144).
The XXXXXXXXXXX XXXXXXXXXXX suggests that there is a strong XXXXXXXX XXXXXXXXXXX between calories XXX XXXXXX. XX it XXXXXXXX XX analysis. XXXXXXX, the p-XXXXX of the regression model XX X.04e-06, which XXXXXXXX XXXX XXXXXXXX significantly correlated XXXX XXXXXX.
When the XXXXXXX XXX XXXXXXX, the model XXXXXXX
y= XX.X+2.401x
The XXX XXXXXXX plot XX
XXX XXXXXXXXXXX XXXXXXX XXXXXX and XXXXXXXX XXXXXXX 0.XX (0.8338989).
The new plot XXXXX XXXXX that the XXX dogs with XXXX XXXXXXXX will XXXX more sodium. Generally, with X unit increase in XXXXXXXX, the amount of sodium will increase 2.XXX XX.
The correlation coefficient still XXXXXXXX that there XX a XXXXXX positive XXXXXXXXXXX between calories and sodium. XXX XXX p-XXXXX XX XXX XXXXXXXXXX model XX X.96e-05, which still XXXXXXXX that calories significantly XXXXXXXXXX with sodium. So it XXXXX supports my XXXXXXXX.
Our XXXXXXXX robustly XXXXXXXXX XXXX hot XXXX with more XXXXXXXX XXXX XXXX more sodium. XX other words, XXXXX XX a XXXXXX XXXXXXXXXXX XXXXXXX these XXX XXXXXXXXX. XXXXXXX, we XXXXXX reach the XXXXXXXXXX XXXX there is a causal XXXXXXXXXXXX XXXXXXX these two XXXXXXXXX. The XXXXXXXXXXX between them XXX result XXXX a spurious XXXXXXXXXXX XXXX a XXXXXXXXXXX/XXXXXX XXXXXXXX XXXXX correlated with these XXX variables, respectively. Besides, XXXX XXXXX XX a XXXXXX relationship XXXXXXX XXXXX XXX variables, XXX XXXXXXXXX XX hard to predict.
########################R XXXX
#Prepare data
x=XXXX.table("data", header=F)
XXXXXXXX(x)=c("Brand", "Calories", "Sodium")
#Linear XXXXXXXXXX (XXX)
XXXXX=XX(XXXXXX~Calories, data=x)
#Scatter XXXX
XXXX(x$XXXXXXXX, x$XXXXXX, XXX=XX, XXX = 1.3, col = "blue",
XXXX = "SODIUM XXXXXXX XXXXXXXX", XXXX="Sodium (mg)", XXXX="Calories")
abline(XXXXX)
#XXXXXXXXXXX coefficient
cor(x$Sodium, x$Calories)
# Remove XXXXXXX
x2=x[-13,]
# XXXXX
model=lm(Sodium~XXXXXXXX, XXXX=XX)
#XXXXXXX XXXX
XXXX(XX$XXXXXXXX, XX$XXXXXX, XXX=XX, XXX = X.X, col = "XXXX",
XXXX = "XXXXXX XXXXXXX CALORIES", XXXX="XXXXXX (XX)", xlab="XXXXXXXX")
abline(model)
#XXXXXXXXXXX XXXXXXXXXXX
XXX(x2$Sodium, x2$Calories)